
Truebit Unchained
a technical report on transparency

Jason Teutsch Federico Kattan Blane Sims

March 27, 2024

Abstract

Data interactions frequently lack provenance due to external de-
pendencies. Indeed, a chasm exists between the visibility of what one
computes locally and the more opaque work of others. We investigate
this issue within the context of transparent computation wherein a ma-
chine which deviates from its prescribed protocol triggers a smoking
gun witnessing its erratic behavior. Finally, we implement a protocol
which operates efficiently under this model.

Contents

1 Invariants as a basis for trust 2

2 The need for transcripts 3

3 Aspects of transparent computation 3
3.1 Blockchain as auditor . 4
3.2 Cloud coordination . 4
3.3 A taste of secret sauce . 4

4 Task lifecycle 5
4.1 Protocol overview . 5

4.1.1 Code distribution . 5
4.1.2 Task issuance . 6
4.1.3 Node registration . 6
4.1.4 Node selection . 7
4.1.5 Task broadcast . 7
4.1.6 Solution commitment 7
4.1.7 Transcript generation 7

1

4.1.8 Node remuneration . 8
4.2 Task Requester endpoints . 8

4.2.1 Metatasks . 9
4.2.2 Hub-attested transcript 9
4.2.3 Transcript ensemble 9
4.2.4 External data integration 9
4.2.5 Snap response . 10

4.3 Economics don’t lie . 10

5 Things that can’t go wrong 10
5.1 Solution censorship . 10
5.2 Conflicting solutions . 11
5.3 Collusion on Node selection 11
5.4 Are spoofed transcripts possible? 12
5.5 Lazy Dispatcher versus red balloons 14
5.6 A filesystem broadcast protocol 16

5.6.1 Code files and large inputs 17
5.6.2 Large solutions . 17

5.7 Deregistering unresponsive Nodes 18
5.8 On slightly misplaced timestamps 18
5.9 Premature reveals . 18
5.10 Bifurcated invoices . 19

6 Platform architecture 19
6.1 Audit ledgers . 19
6.2 Preparing a task . 21

6.2.1 Instrumentation . 21
6.2.2 Pre-deployment . 22

6.3 Coordination services . 23
6.3.1 Deployment . 23
6.3.2 Dispatcher . 23
6.3.3 Hub . 24
6.3.4 Transcripts . 24
6.3.5 Accounting . 25

6.4 Inside a Node . 25

1 Invariants as a basis for trust

An invariant is something that doesn’t change regardless of environmental
circumstances or operations. Barring a miraculous resurfacing of the net-

2

work founder’s private keys, “Satoshi Nakamoto’s wallets hold one million
bitcoin” is an invariant [12]. Invariants foster trust in day-to-day society. In
real estate, a buyer and seller contractually agree on transaction invariants,
including price, timeline, and documentation requirements, while they work
to remove contingencies. A word to the wise: when someone asks for trust,
demand to see invariants.

Let us zoom in on the custom, real estate engagement. Once two par-
ties have agreed on contract terms in the form of a Microsoft Word .docx
document, one party is supposed to convert that .docx to .pdf, sign it, and
email the signed .pdf to the other side for countersignature. How does the
countersigning party determine whether the .pdf conversion process actu-
ally preserved the .docx text? Traditionally, the receiver performs a care-
ful, manual comparison of the two files. Wouldn’t it be nice if instead the
sender included machine-readable proof that the document transformation
was text-invariant?

2 The need for transcripts

A certificate is definitive proof that something happened. Network exe-
cution of a task results in an augmented certificate called a transcript, a
descriptive object relative to the traditional realm of proof-based verifiable
computing [31]. Transcripts chronicle code execution, including what was
executed and when, as well as inputs, outputs or results, identifiers for each
party that touches data or code, methodology including virtual machine
parameters, as well as annotations for economic incentives, runtime errors,
consensus issues, data accessibility, and automated resolutions.

Transcripts enable universal consensus with respect to data origin and
processing, or data provenance [3]. They indicate the event provenance
of when the processing took place, can trigger downstream actions, and
conversely afford an iterative view into historical, upstream processing. For
analogy, an email documents that a message was sent at a particular time,
while a transcript does the same for arbitrary code.

In short, a transcript provides a portable, invariant witness of process
“unchained” from any particular network.

3 Aspects of transparent computation

A transparent system produces transcripts through a specialized server,
called a Hub, whose operation combines elements of blockchain and cloud.

3

In a nutshell, if either a compromised Hub or its related services were to de-
viate from prescribed protocol, the corresponding transcript ensemble (Sec-
tion 4.2.3) would witness their collective, erratic behavior as a smoking gun
[26]. Absent a smoking gun, a truly transparent system rules out improper
action as infeasible. Meanwhile, the Hub holds independent, Byzantine [20]
solver Nodes accountable for task execution.

Why should one rely on an errant Hub to report its own errors in a
transcript which it itself creates? Before dipping into secret sauce, let us
first inspect a few properties of the transparent computation model.

3.1 Blockchain as auditor

Blockchain ledgers globally and indisputably time-stamp data [30]. Since
the present system writes to ledger only during auditing and registration,
and not routine execution, its operation avoids typical scalability issues as-
sociated with blockchains [19]. Indeed, ledger capacity bounds neither task
throughput nor the quantity of active Nodes available to execute tasks.

3.2 Cloud coordination

Transparent computation can realize blockchain-like auditability without
sacrificing the familiar performance, versatility, cost-effectiveness, and con-
venience of mainstream, cloud applications. Unlike smart contracts [33],
whose data processing requires heavy, universal consensus, the lightweight,
auditable Hub operates like a typical cloud server. Not only does the Hub
“stay awake” between interactions, but it can access internet resources and
message natively via standard protocols like https.

3.3 A taste of secret sauce

While the Hub and Nodes message each other entirely via standard protocols
under normal operation, a Node can at any moment use a ledger to time-
stamp, or time-channel, its task execution message. This keeps the Hub
on its toes and prevents censorship (Section 5.1). In addition, economic
incentives exist to ensure that Nodes complain about errant transcripts and
record such audits to ledger (Section 4.1.8). Finally, anyone inspecting a task
transcript ex post facto can both confirm that the protocol selected Nodes
randomly (Section 5.3) and that the selected Nodes actually performed the
task (Section 4.1.6).

4

4 Task lifecycle

The Hub outsources computation tasks to multiple, economically motivated
Nodes, and the network scales as additional Nodes join. While we assume
finances bound Node behavior, the system in fact tolerates a Byzantine
majority with respect to task execution.

4.1 Protocol overview

Basic, happy path task execution follows eight phases. All messages are
cryptographically signed by their respective senders and hence cannot be
forged. Nodes receive signed acknowledgements for each message sent to
the Hub, and the Hub signs each transcript.

4.1.1 Code distribution

Prior to issuing compiled tasks for the first time, the Hub must issue a special
instrumentation task [15] which authoritatively supplements the Task Devel-

Hub
Accounting

ServiceHub- attested
transcript

transcript ensembleREST API

Task Requester
endpoints

Nodes

task execution
messages

ledger

registration
and auditing invoicing

 Node
availability

blockchain

random bits

task
metadata

Task Requester

Dispatcher

Figure 1: System schematic with information flows.

5

oper ’s code file with low-level verification hooks including checkpoints, me-
tering, determinism, and, if not done already, filesystem calls (Section 6.2.1).
The Hub then deploys the well-formed (instrumented) code file to the Nodes
(Section 5.6.1).

4.1.2 Task issuance

Once instrumented code has been distributed, a Task Requester proceeds
to broadcast the task’s (optionally signed) inputs and metadata to the Dis-
patcher (Section 5.5). The Task Requester then awaits a response. Task
metadata includes content addressed [11] links to large inputs.

4.1.3 Node registration

Nodes must register via ledger in order to be selected for participation in
tasks. In order to disambiguate which Nodes were online at the moment of
task issuance, the ledger timestamps each Node registration. Secondly, the
ledger provides basic database operations, essentially smart contracts, which
guarantee tamper-proof registration and ex post facto registration lookups
with respect to historical blocks.

In more detail, the ledger maintains a one-to-one correspondence from
registered Node IDs to integers so that a random set of integers indicates an
independent set of Nodes. Two invariant, constant-time operations “regis-
tration” and “deregistration,” detailed below, preserve the mappings’ range
as a set of consecutive integers from one through the number of registered
Nodes and maintain the bijection between IDs and integers. The smart con-
tract synchronously updates an array and a set of mappings such that, given
an ID, x, and integer, n, the nth array position contains x, and the mapping
with input x returns n. In the descriptions below, the array mirrors all
changes to the mappings.

Initialization. Initially, there are no mappings, and we define the maxi-
mum integer of the empty set to be zero.

Registration. When a Node registers, the smart contract creates a new
mapping from the new Node’s ID to the maximum integer plus one.

Deregistration. When a Node deregisters, the mapping from its ID to,
say, integer n is destroyed, as is the mapping from some ID x to the
maximum integer. Now a new mapping is created from x to n.

6

Lookup. During transcript verification, one makes simple queries to the
ledger of the following form, “Give me the IDs corresponding to ran-
dom bits 456, 232, 656, and 971 in historical registration epoch 80.”
The ledger can now easily read off the corresponding IDs, and then a
transcript observer can confirm that the task was executed by Nodes
corresponding to those IDs.

4.1.4 Node selection

The Dispatcher selects a random subset (or union of subsets) of Nodes,
optionally with predesignated restrictions or operators, from among those
ledger-registered as being online. It bases its selection on random bits gener-
ated from the concatenation of three seeds: the Task Requester’s timestamp
for message send, the Dispatcher’s timestamp for message receive, and finally
a recent, unpredictable block hash [1] from a blockchain. These immutable,
unpredictable, random bits, which are verifiable by anyone with access to
the task transcript, also serve as optional inputs to the task itself.

4.1.5 Task broadcast

The Dispatcher relays the task metadata to each selected Node and can use
peer-to-peer [25] methodology to confirm proper broadcast (Section 5.5).

4.1.6 Solution commitment

Each selected Node commits a signed, salted, and encrypted solution to the
coordinating Hub before the task’s timeout. Nodes cannot see each others’
solutions, and the Hub acknowledges each solution received. Solutions which
are too large to include in task metadata require a separate message from the
Node which begets a further acknowledgement from the Hub (Section 5.6.2).

4.1.7 Transcript generation

The Hub decrypts each of the Nodes’ solutions and then generates a tran-
script consisting of task metadata, selected Node set, and the Nodes’ plain-
text solutions. All solutions should be identical because instrumentation
makes task execution deterministic. In the unlikely event that two Nodes
disagree on a solution, they must play a verification game [29] (Section 5.2)
to pinpoint the first divergent step in their computations. The Hub records
the interactive dispute and outcome in the task’s transcript.

7

4.1.8 Node remuneration

The Hub submits its completed transcript to the Accounting Service where
three fixed-time, ledger-based stages encompass the protocol’s final verifica-
tion.

In the candidate Invoicing Stage, the Accounting Service first prescrip-
tively annotates the most recent transcripts with appropriate economic pa-
rameters for Nodes and Task Requesters. It then batches these annotated
transcripts, or invoices, together andMerkle tree [22] commits them to ledger
along with updated account balances for Nodes. The Accounting Service
provides participating Nodes with access to the newly batched invoices.

During the subsequent Rebuttal Stage, a Node may express grievance(s)
regarding invoicing. If the Accounting Service fails to Merkle commit an in-
voice to ledger, fails to grant full invoice access to a participating Node, pro-
vides a transcript missing the Node’s solution or verification game records,
or invoices incorrectly, then the Node can post a rebuttal to ledger in the
form of a signed Hub acknowledgement or time channel (Section 5.1).

In the Finalization Stage, the Accounting Service responds to rebuttals
by posting Merkle proofs [21], account balance updates, an invoice hash,
or proof of message propagation (Sections 5.5–5.6) to ledger. Rebuttal and
Finalization Stages may iterate within time bounds until all four grievance
categories have been sequentially exhausted. If no Nodes presented objec-
tions during the Rebuttal Stage, as expected in the normal course of affairs,
then the Accounting Service’s commitment from the Invoicing Stage auto-
matically carries over to the Finalization Stage without additional writes to
ledger.

At any moment, a Node or Task Requester can settle its outstanding
balance, as represented in its most recent invoice participation, for standard
ERC-20 [14] tokens on Ethereum. All remaining balances reside on the
Accounting Service’s queryable, internal accounting system. Any deviation
from prescribed accounting principles yields a smoking gun due to ledger
traceability.

4.2 Task Requester endpoints

Task execution returns different objects to the Task Requester depending
on the task’s metadata specifications as detailed below.

8

4.2.1 Metatasks

A metatask occurs when outputs from a set of tasks feed into an input for
a downstream task. Metatasks which link temporally contiguous tasks en-
sure consistent, data availability and enhanced performance by persisting
Node participation across the entire execution sequence. Task Requesters
can specify such execution dependencies through directed acyclic graphs [13]
wherein the system pinpoints execution discrepancies by identifying the left-
most branch of disagreement followed by the earliest, disputed task execu-
tion along that branch [35, Figure 6]. Non-contemporaneous executions, on
the other hand, rely on prior transcripts’ input and output commitments to
verify downstream data authenticity ex post facto.

4.2.2 Hub-attested transcript

The Task Requester obtains a Hub-attested transcript describing the solu-
tions provided by several Nodes. Either all solutions agree, or the transcript
must include a valid description and outcome for a verification game [29]
(Section 5.2).

4.2.3 Transcript ensemble

Following a Hub-attested transcript, the Accounting Service creates trans-
parency by returning a finalized transcript ensemble. A complete transcript
ensemble consists of a Hub-attested transcript wrapped inside a final invoice
which includes pointers to invoice commitment(s) on ledger as well as any
Node rebuttals and Accounting Service responses.

4.2.4 External data integration

A Task Requester can get data into or out of the system through certified
interactions wherein selected Nodes together form a joint session key [17]
which reads or writes data via an internet-facing application programming
interface [2], or api. This method resembles Linux curl, and Task Requesters
can pipe results into downstream tasks.

When conjoined with a transcript ensemble via metatask, api adapter
transcripts constitute self-contained, succinct, sustainable proof that, even
without persisting access to the original input, data served from an authen-
ticated api exhibits certain, user-defined characteristics. Similarly, one can
definitively memorialize the result of feeding one api’s response into another
api at a particular moment in time.

9

4.2.5 Snap response

In snap response mode, the Task Requester obtains a synchronous solution
from a single, random Node along with a corresponding transcript.

4.3 Economics don’t lie

To summarize, after each task execution, the Accounting Service publicly
invoices Nodes for their participation (Section 4.1.8). Rational Nodes will
dispute errant invoices, and public invoice disputes become part of the final
transcript ensemble. In this way, economics error-correct transcripts and
deliver finality to tasks. Forms of meritorious evidence include, as detailed
in the next section, signed acknowledgements from the Hub, time channels,
proof of broadcast censorship, and evidence of prematurely revealed infor-
mation.

5 Things that can’t go wrong

We observe system resilience against critical attack vectors. In all cases,
the economic reward for correctly reporting a smoking gun substantially
dominates other task rewards and slashes.

5.1 Solution censorship

The Hub cannot censor solutions. Indeed, if the Hub were to fail to acknowl-
edge a Node’s solution, that Node could simply time-channel its overlooked
message. Were the Hub to acknowledge a Node’s solution but omit it from
a task transcript or garble the transcript itself, a rational Node would then
present the Hub acknowledgement to the Accounting Service as smoking
gun evidence of transcript tampering. Economic incentives thus prevent un-
detected solution censorship. Under normal operation, however, such errors
do not arise because the Hub acknowledges and records all valid messages.

The solution recording process illustrates two quintessential methods for
achieving transparency. First, a transcript omitting a Hub-acknowledged
solution points clearly to a smoking gun. Second, time channels make cen-
sorship of short messages impossible. Note that a time channel in isolation
can’t distinguish a negligent Node from an unresponsive Hub.

10

5.2 Conflicting solutions

When Nodes present two or more inconsistent solutions, the Hub must ap-
pend to the transcript verification game [29] component(s) each consisting
of an interactive proof pinpointing the source of disagreement between dis-
parate execution pairs. By design, each pair agrees on the initial, virtual
machine state but disagrees on the final one. The initial state depends on
code but not runtime inputs as the latter are read in through the course of
execution.

Each verification game proceeds via binary search [6] At first, one player
presents a solution while the other declares whether it agrees at the midpoint
computation step, n/2, thereby slicing the area of contention in half and
bringing the next step in question to either n/4 or 3n/4, etc. After log n
iterations, only a tiny, single step remains. The winner of each verification
game receives a reward, and the loser gets slashed. When a task requires
more than one verification game, each game is played in sequence, and each
Node gets penalized for a flawed solution at most once.

Absent Hub acknowledgement, time channels can still definitively prove
that a participating verification game player responded in a timely manner
by the method of Section 5.1. In case the Hub were to fail to relay a
message, the underinformed player would replay its last confirmed move via
time channel, the opponent would respond on ledger, whereafter the game
would resume on Hub. In either scenario, time channels prevent censorship.

5.3 Collusion on Node selection

Suppose that the Task Requester were to collude with the Dispatcher on
Node selection with the goal of selecting a friendly Node set which mutually
agreed on a bogus solution for a task. While the colluding pair could choose
a pair of favorable timestamps for random bit seeds, they have limited time
to make the selection because the third seed consists of a recent and un-
predictable block hash (Section 4.1.4). A successful collusion between Task
Requester and Dispatcher might go undetected in the transcript ensemble
and therefore violate transparency. Thus we are left to argue for infeasibil-
ity of such collusion. We remark that neither the Task Requester nor the
Dispatcher can easily cheat independently.

Let us calculate the probability of guessing a suitable pair of timestamps

11

over a fixed time interval. Let

t = time required to check one guess,

b = length of time interval for guessing,

k = number of Nodes assigned to the task, and

a = fraction of Nodes influenced by the Task Requester.

For concreteness, t is essentially the time to concatenate the three “random”
seeds and calculate their hash. The number of guess opportunities is ⌊b/t⌋,
and the chance of successfully obtaining a complete set of influenced Nodes
on a single guess is bounded above by ak. Therefore the chance of failure is
at least 1− ak, and the chance of failing ⌊b/t⌋ times in a row is no less than

p =
(
1− ak

)⌊b/t⌋
.

Hence the chance of successful attack over time interval b is at most 1− p.
The chance of success depends on one’s tolerance for cost, speed of ex-

ecuting the task, attacker compute resources, and willingness to tolerate a
possible orphaned [23] block. Consider the following example parameters.

t = 10 milliseconds,

b = 9 seconds,

k = 8 Nodes, and

a = 7% of the network.

In this case, the probability of a successful collusion during time interval b
is roughly 5× 10−7.

Taking into account advertised time to finality (ttf) [10] for some popu-
lar blockchains, in Table 1 we see that selecting relatively few Nodes suffices
to render this attack ineffective in practice under the conservative assump-
tion that the attacker learns the block hash immediately after the corre-
sponding block broadcast.

5.4 Are spoofed transcripts possible?

Unfortunately, there exist ways to syntactically generate transcripts which
have nothing to do with actual task execution. For example, one could
simply tweak a valid transcript using a text editor. Näıve transcript ed-
its invalidate Dispatcher, Hub, and Node signatures, so let us restrict our
analysis to the case where these parties cooperate with the attack. Such

12

https://www.wolframalpha.com/input?i=1+-+%5B1+-+%287%25%29%5E8%5D%5E%289+s%2F.01+s%29

Selected
Nodes (k)

% Colluding
Nodes (a)

Time
Interval (b)

Probability
of Success (1− p)

9 10%
6.5 sec
Cosmos

7× 10−7

12 20%
2.1 sec

Avalanche
9× 10−7

27 50%
0.9 sec
Aptos

7× 10−7

Table 1: Sample collusion attack parameters (with t = 10 ms).

cooperation might indeed go undetected during inspection of a transcript
ensemble and hence avoid a smoking gun. We remark that the protocol
uses publicly verifiable random bits for Node selection, as opposed to hav-
ing Nodes volunteer for tasks, because the latter approach makes transcript
synthesis too easy.

Consider the following offline manipulation of random bits and time-
stamps which aims to generate a bogus but valid transcript.

1. The attacker chooses a block hash at some convenient, historical time
during which colluding Nodes were registered.

2. The attacker keeps guessing timestamps offline until it finds one that
selects the colluding Node set so that when the cooperating Dispatcher
signs, Node selection looks legitimate.

3. The selected Nodes provide bogus, signed solutions, and the Hub signs
these solutions into a transcript, even though the timestamps are not
current.

An observer of this transcript can’t tell that it’s fabricated because the
transcript is syntactically valid. The system requires two items which make
this attack infeasible.

a) The Hub submits its transcript to the Accounting Service immediately
once available.

b) The Accounting Service promptly commits the associated invoice to
ledger.

13

https://www.wolframalpha.com/input?i=1+-+%5B1+-+%2810%25%29%5E9%5D%5E%286.5+s%2F.01+s%29
https://www.wolframalpha.com/input?i=1+-+%5B1+-+%2820%25%29%5E12%5D%5E%282.1+s%2F.01+s%29
https://www.wolframalpha.com/input?i=1+-+%5B1+-+%2850%25%29%5E27%5D%5E%280.9+s%2F.01+s%29

Unlike the Hub and Dispatcher, which operate outside the ledger, the Ac-
counting Service must publicly commit an authentic timestamp. If its times-
tamp contradicts those supplied by the Dispatcher and Hub, then trans-
parency strikes with a smoking gun witnessing the anomaly.

Still, how difficult is it to convincingly synthesize such a transcript?
While neither the Hub nor the Accounting Service can delay much due to
the Accounting Service’s requisite commitment to ledger, the attacker could,
and most likely would, precompute the bogus solution. The time allotted for
solving the task can therefore be repurposed for guessing random bits, which
brings us back to the collusion analysis from Section 5.3. If we assume that
the maximum task timeout is 600 seconds and that the Accounting Service
has 60 seconds to batch its final transcript for commitment to ledger, then
absorbing these additional delays into the block delay b and keeping other
parameters the same, the cooperating Hub, Dispatcher, and friends have
roughly 4 × 10−5 chance of successfully executing this attack during the
augmented time interval b.

By the same token, timestamp manipulation is, roughly speaking, trans-
parent. During an actual task execution, the Hub cannot slide timestamps
backwards by much, lest the Accounting Service miss its window for com-
mitting its invoice to ledger. The Dispatcher also cannot slide timestamps
forward much because it can’t guess future block hashes.

5.5 Lazy Dispatcher versus red balloons

Faulty task announcements enable injection of unchallengeable solutions into
a transcript while creating an illusion of unresponsive Nodes being offline.
In order to cast light upon a smoking gun for such censorship, the system
must reliably estimate the likelihood that a non-atomic broadcast [4] caused
a missing solution.

While no proof of broadcast to almost all Nodes can vindicate a Dis-
patcher who knows exactly which few selected Nodes to censor, methodology
employed in the DARPA Red Balloon Challenge suggests an appropriate al-
ternative based on economic incentives and peer-to-peer dissemination [28].
At the moment of task broadcast, a few red balloons randomly become hid-
den behind a few Nodes in a way that no one, including the Dispatcher,
knows their locations. A recursive incentive structure [5, 28] then rewards
gossiping of the task broadcast through selected solver Nodes and towards
red balloons. We remark that this anti-censorship scheme overlaps in effect
with and complements time channels.

A successful, directed path [24] includes at least one selected solver Node

14

https://www.wolframalpha.com/input?i=1+-+%5B1+-+%287%25%29%5E8%5D%5E%28669+s%2F.01+s%29

and ends at a red balloon. According to the 1/2-split contract method [7]
a Node sitting i hops from the red balloon along a successful path receives
1/2i+1 fraction of the total reward for that path. The astute reader may
note that this distribution allocates only

n−1∑
i=0

1

2i+1
=

n∑
i=1

1

2i
= 1− 1

2n

fraction of the reward, where n is the number of Nodes in the successful
path. The remaining 2−n can be split among the non-origin Node(s) along
the successful path to incentivize them not to erase preceding path edges.

Empirical results show [28] that the system above successfully incen-
tivizes cooperation in red balloon hunts. While Sybil attacks [27] on the
1/2-split contract scheme above can nearly double a gossiping Node’s gains,
they do not impact downstream rewards. Moreover, bounding the length of
successful paths, heavily weighting rewards toward the end of the successful
paths, and paying significantly greater rewards for shorter, successful paths
can eliminate Sybil attacks entirely [5, 8].

Prior to the task broadcast, say, once a week, each Node randomly
chooses a list of 256-bit lottery tickets, sticks the lottery tickets into the
leaves of a Merkle tree, computes the Merkle root of those leaves [22], and
commits the root to ledger. Each Node can provide at most one root per
week. Any Node that shares its raw lottery tickets or makes leaves too easy
to guess has compromised its lottery claims, hence each Node has incentive
to keep its lottery tickets private.

At the time of task issuance, the system randomly selects, using a block
hash and a pair of task timestamps (Section 4.1.4), both a Merkle leaf po-
sition and some lottery prefixes. A Node has a red balloon if it can show a
ledger-committed Merkle root whose lottery ticket at the randomly chosen
leaf position matches one of the randomly selected lottery prefixes. There
are sufficient leaves in each Merkle tree so that the same lottery tickets are
unlikely to be called twice during the week.

In order ensure atomic broadcast, the Dispatcher broadcasts task an-
nouncements widely and timely to all Nodes. Under normal circumstances,
this broadcast suffices and all Nodes respond to the Hub with their solu-
tions. In the meantime, however, if a Node holding a red balloon ends up
with signed evidence of a successful path passing through a selected Node,
then it timely submits that path to the Hub via commit-reveal. If the Hub
does not acknowledge the path, then the red balloon Node can time-channel.

Finally, let us attempt to discern whether a missing solution from a

15

particular Node N derives from Dispatcher censorship or N being offline.
Let r be the number of successful paths reported for a given task, and let
k be the number of selected solver Nodes for the task. If we assume that
each independent, successful path is as likely to pass through one selected
solver Node as another, then the chances of each successful path not passing
through an online N is bounded above by 1 − 1/k, hence the chance that
none of the successful paths include N is(

k − 1

k

)r

.

For concreteness, if k = 5 selected Nodes and r = 7 successful paths, then
there is more than a 21% chance that all paths would have missed N , which
means N was likely offline. With the same k = 5 but r = 3 successful paths,
we reach a 51% chance that all successful paths missed N , and therefore we
more likely have a smoking gun against the Dispatcher.

While the expected number of successful paths must always be chosen
large enough so as to absolve the Dispatcher, any effort made by the Dis-
patcher to decrease the number of successful paths can only tip probability
more towards a smoking gun. Finally, N must be online whenever it belongs
to a successful path because each included Node must sign its respective seg-
ment of the path, at which moment it reveals its peer-to-peer identity to the
other Nodes. Bribery aimed at preferring a successful path with a particu-
lar selected solver Node over another is relatively ineffective: once a selected
Node has heard about the task, censorship has already failed.

As a last resort, there exists a natural moment for the Task Requester to
reissue its task. As depicted in Section 5.4, the Accounting Service cannot
remunerate Nodes for performing tasks whose timestamps have expired.

5.6 A filesystem broadcast protocol

At first glance, it might seem that manifesting file retrievability reduces to
the atomic broadcast scenario from Section 5.5. Large files, however, neither
propagate like task metadata nor stick to ledgers. While the Dispatcher
broadcasts tasks, the Hub and Nodes broadcast or exchange input, code or
solution files. Also, in contrast to the task announcement scenario, future
selected Nodes remain unpredictable during file broadcast. Appealing to
standard cloud storage doesn’t clarify who is to blame when a file goes
missing because a broadcaster can pretend to use that service while in reality
restricting its distribution to friendly Nodes.

16

https://www.wolframalpha.com/input?i=%28%28k-1%29%2Fk%29%5E7+where+k+%3D+5
https://www.wolframalpha.com/input?i=%28%28k-1%29%2Fk%29%5E3+where+k+%3D+5

5.6.1 Code files and large inputs

For performance and data availability reasons, code files and large inputs
must be distributed to all relevant Nodes prior to use in tasks. The Dis-
patcher is, of course, blinded as to which Nodes will eventually be selected to
execute these tasks. Each time a Task Developer uploads a code file to the
Hub, or a Task Requester uploads an input file, the Dispatcher randomly
selects (Section 4.1.4), say, five Nodes and asks whether each has succeeded
to downloaded the file. In case of a “no” or non-response, the Dispatcher
repeats the process with five fresh Nodes. If the file was a code file which re-
quires instrumentation, then the five confirmed Nodes immediately perform
an instrumentation task. If the file was an input file, then the first time it
gets used in a task, the Dispatcher obligates one of the corresponding Nodes
to participate in that task. In each case, a “file not found” error from a Node
which claimed to have previously downloaded the file results in a slash and
file rebroadcast. If all five confirmed Nodes become unregistered prior to
task issuance, the Hub rebroadcasts the file.

Nodes may choose to gossip code and input files to each other in order to
increase the likelihood of receiving a bonus when all selected Nodes provide
solutions. A selected Node does not know a priori the other selected Nodes,
so gossiping to everyone is a good strategy.

5.6.2 Large solutions

Suppose that a Node produces a solution too large to fit in a time channel.
The Node then must transmit to the Hub both a hash commitment of its
solution for inclusion in transcript and the large file itself. In the event
of discrepancy, the Node calls, by way of time channel, for a red balloon
challenge (Section 5.5) and propagates the large file to the entire network of
relevant Nodes. The selected solver and terminal Nodes in a successful path
each provide signed chunks of the Merklized solution as proof of possession.
The Hub provides its own address as one of the selected Nodes for this
challenge, and if the Hub acquires the solution through the course of the
Nodes’ peer-to-peer propagation, then all is well. Otherwise, the challenge
results likely point to a smoking gun. This situation arises rarely because,
whenever selected Nodes agree on a solution, the Hub need only receive the
solution from one of them.

17

5.7 Deregistering unresponsive Nodes

In case a selected Node fails to respond to a task, as evidenced by a tran-
script ensemble including successful paths (Section 5.5), the Hub deregisters
the unresponsive Node while citing that task on ledger. Both Hub fail-
ure to perform required deregistration and rogue Hub deregistration induce
smoking guns relative to the transcript ensemble backdrop. The penalty for
Node non-response exceeds the cost of losing a verification game so as to
discourage coordinated solution disappearances.

5.8 On slightly misplaced timestamps

We argued in Section 5.4 that timestamps can’t be moved by a significant
amount, but what about smaller perturbations? If the Task Requester were
to use a slightly future timestamp, then overall task processing is just de-
layed. If the Task Requester’s timestamp were too early, then the Task
Requester censors its own task because the Dispatcher can’t broadcast the
task without incurring a “lazy Dispatcher” smoking gun (Section 5.5).

We claim that the true, real-time timeout for each task actually coincides
with the timeout implied by the Dispatcher’s timestamp whenever the Task
Requester’s timestamp accurately reflects task issuance. First, observe that
the Dispatcher’s timestamp cannot differ much from the Task Requester’s
timestamp without triggering a smoking gun. If the Dispatcher were to
delay task announcement, then again we land in the “lazy Dispatcher” case.
Finally, the Dispatcher cannot physically announce the task earlier than its
claimed timestamp since its timestamp coincides with the Task Requester’s
timestamp which, by assumption, coincides with actual task issuance.

5.9 Premature reveals

An agent who prematurely reveals information may influence transcript out-
come without presenting a smoking gun. We remark that only selected
Nodes need witness task correspondences with the Hub. According to pro-
tocol, neither the Hub nor Nodes access superfluous information.

All data related to a task at a given moment is either public or prema-
ture, meaning one can draw a bright line as to who was responsible for an
information leak. For example, data or a transcript returned to the Task Re-
quester immediately becomes public because the Task Requester may do as
it pleases. It follows that the Task Requester cannot securely request both
a synchronous snap response and Hub-attested transcript within a single

18

task because a fast, synchronous response might reclassify data and hence
influence the results of the Hub-attested transcript.

The Accounting Service considers only cryptographically signed mes-
sages as definitive evidence of premature reveal. Significant rewards exist
for time-channeling premature reveals, including the following.

1. A Node shares a signed, plaintext, rather than an encrypted solution,
to the Hub. Such a solution becomes available prior to transcript
release.

2. The Hub decrypts, signs and shares a Node’s plaintext solution prior
to returning the corresponding transcript to the Task Requester and
Accounting Service.

5.10 Bifurcated invoices

We argue that the Accounting Service cannot serve more than one invoice
per transcript. Suppose that during the Invoicing Stage the Node observed
an invoice paying it a positive reward, but there was another invoice batched
for the same task slashing the Node. Since the Node sees all tasks batched
in the ledger commitment, it raises an objection during the Rebuttal Stage.
The Accounting Service must then indicate, during the Finalization Stage,
a unique invoice for the task, and only that single invoice, along with any
Node audits, is authoritative.

If the Node’s task is missing altogether from any batch, then after the
task times out, the Node can raise an objection. We remark that the Ac-
counting Service cannot batch a task prior to task timeout without bearing
a residual smoking gun.

6 Platform architecture

Figure 2 depicts system functionality in three implementation components:
audit ledgers, coordination services, and Nodes. Audit ledgers, which live on
blockchains, underpin transparency and facilitate incentives. Cloud-based
coordination services deploy tasks, oversee execution, record activities, and
analyze outcomes. Nodes provide independent computation substrates.

6.1 Audit ledgers

The system uses several ledger types, each with unique characteristics, which
cumulatively achieve transparency. We proceed to list the ledger types used

19

Nodes
Coordination

services

Audit ledgers

Node registration /
time channels /
invoice rebuttals

Node availability /
 invoicing

task issuance / solutions /
acknowledgments / verification game

Figure 2: Platform overview.

by the protocol.

Node registration establishes node identity and availability.

Task registration advertises task availability and name.

Lottery tickets are commitments for receiving red balloons.

Randomness provides the block hash for random bits.

Time channel records authoritative timestamps for protocol events.

Invoice records Node payments and penalties.

Evidence records objections to invoices.

Payment executes financial settlement.

Each audit ledger has unique technical requirements for its underlying block-
chain. We define these criteria and then match them to ledgers in Table 2.

Security. Decentralization ensures unpredictable block hashes.

Speed. Short, expected ttf prevents attacks from Sections 5.3–5.4.

Precision. Higher frequency blocks allow for more precise timestamps.

Variance. Low ttf variance.

Contracts. Supports simple database operations.

History. Supports historical queries to contract state.

Reliability. Low occurrence of dropped or delayed transactions.

20

Cost. Low expense associated with transactions.

Storage. Maximum data attachment per transaction.

Availability. Low chance that data might someday disappear.

Economics. Enables monetary value transfer.

Ledger type C
on
tr
ac
ts
/H

is
to
ry

S
ec
u
ri
ty
/S

p
ee
d

P
re
ci
si
on

V
ar
ia
n
ce

R
el
ia
b
il
it
y

C
os
t

S
to
ra
ge

A
va
il
ab

il
it
y

E
co
n
om

ic
s

Node registration

Task registration

Lottery tickets

Randomness

Time channel

Invoice

Evidence

Payment

Table 2: Primary considerations for ledgers.

6.2 Preparing a task

In addition to metadata, each task includes a codefile in the form of an
instrumented WebAssembly (Wasm) module [32]. For performance reasons,
Nodes execute tasks using just-in-time compilation [18] but fall back to
interpreters [16] for observation during verification games.

6.2.1 Instrumentation

A canonically instrumented, Wasm-based interpreter streamlines task cre-
ation directly from interpreted code (e.g., JavaScript or Python). One need
only feed the source code along with its rolled up dependencies and program
arguments directly as inputs into the precompiled interpreter codefile.

21

packaged
(code rollup)

Instrumented
JS / Python VM

invocation + arguments
Developer's environment / IDE / Platform helper CLI

deployed to
global store

Node

JavaScript / Python
source code

dependencies+
(WASM module)

Figure 3: JavaScript and Python instrumentation pipeline.

For compiled languages (e.g., Rust or C++), on the other hand, the
Task Developer must first compile to Wasm using a standard toolchain.
The Task Developer then obtains the final codefile by issuing to the net-
work a special, precompiled instrumentation task which adds to the Wasm
file checkpointing, metering, initial state, filesystem hooks, and handling for
non-determinism including floating point and NaN. The system can instru-
ment compatible Wasm modules without access to source file(s).

Rust / C++
source code

compiled to
WASM

instrumented
WASM

WASM
runner

deployed to
global store

invocation + arguments

NodeDeveloper's environment / IDE / Platform helper CLI Instrumentation Task

Figure 4: Rust and C++ instrumentation pipeline.

One might wonder why the Task Developer issues an instrumentation
task in production rather than instrumenting locally. Suppose that each
selected Node were to locally instrument its own Wasm file. Even though
the instrumentation process is deterministic, the system would have no way
to achieve correct consensus on task execution were a Node to deviate from
the instrumentation protocol. Indeed, one cannot initiate a verification game
without agreement on initial state. Moreover, a Node could distort meter-
ing injections in order to claim payment for more work than it actually
performed. Lastly, task execution would incur delays from runtime instru-
mentation. Even if some Nodes could cache the instrumented file ahead of
time, not all selected Nodes would enjoy that luxury.

6.2.2 Pre-deployment

Prior to engaging coordination services, a Task Developer commits task def-
initions including task name, network routing endpoints, codefile content

22

address, and either default or custom metadata to a task registration ledger.
A locally hosted command-line interface [9], or cli, streamlines task regis-
tration, deployment and other common operations.

6.3 Coordination services

Coordination services live in horizontally-scaled containers [34] on internet-
attached hosts. This cloud based approach affords speed, cost efficiency, and
network connectivity capabilities not present in blockchains. Coordination
services communicate with Nodes via the Hub’s message broker and interact
with audit ledgers through ledger adapters as illustrated in Figure 5.

dispatcher

Hub (Global Message Broker)

incoming task
execution request

task assigned to
solver cohort

execution
service

task created

validation
service

writer
service

timeout
service

valid message
syntactic checks

timeout events
quorum checks

task recorded
event

Global
Transcript

Store

transcript
service

transcript queries

Nodes

solutions

task
assignments

Hub (Task Execution Microservices)

accounting
service

deployment
service

ledger
adapter

Audit Ledgers

Global
Code
Store

task deployment
request

API
adapter

External
Services

Figure 5: Hub and related coordination services. denotes signed message.

6.3.1 Deployment

The deployment service writes registered task code to content-addressable
global code storage. The Task Developer deploys task code to the deploy-
ment service which initiates task instrumentation. As Task Developers post
code to the service through signed https api requests, their task registration
details synchronize with the task registration ledger. This service initiates
instrumentation of the deployed code by calling the instrumentation task.

6.3.2 Dispatcher

The Dispatcher processes task requests from Task Requesters and provides
ingress interfaces for network protocols. The Dispatcher manages Node se-

23

lection, including collation of random bits from block hash and timestamp
sources. After Node selection, the Dispatcher signs the task request and
sends it to the Hub.

6.3.3 Hub

The Hub consists of a global message broker plus the microservices below
which facilitate task execution.

Execution service. After receiving a task request from the Dispatcher,
the Hub’s execution service assigns a task ID, broadcasts the task to each
assigned Node through the message bus, timestamps Node responses,
and records errors. When the Task Requester calls for a snap response,
the execution service provides it to the Dispatcher to close out the Task
Requester’s synchronous request.

Validation service. The validation service checks for syntactic correct-
ness of responses and protocol adherence. Key checks include valid signa-
tures, valid execution ID, valid Node address, message schema validation,
and absence of duplicate messages.

Timeout service. The timeout service plays timekeeper, concurrently
ensuring that each task adheres to the protocol’s time limits. In addition
it checks that necessary quorums, such as number of received solutions,
and events, such as solution reveals, transpire before expiration.

Writer service. Once transcript messages are persisted in the Hub’s
database, the writer service passes events in the order received to the
execution service.

Ledger adapter. The ledger adapter abstracts interaction with the
various ledgers from the rest of the Hub. It also listens to relevant ledger
events and forwards them to the appropriate queue inside the Hub for
processing.

api adapter. The api adapter interacts with external interfaces.

6.3.4 Transcripts

The transcript service records and retrieves Hub-attested transcripts to and
from global transcript storage. Cryptographic signatures ensure the integrity
of each transcribed event, while a signed hash of the entire transcript certifies

24

Hub attestation. The Hub’s public key appears on the Node registration
ledger.

6.3.5 Accounting

The Accounting Service calculates and issues payments and penalties accord-
ing to Hub-attested transcripts and transcript ensembles. Its roles includes
semantic validation of transcript ensembles, posting invoices to the invoice
ledger, and processing settlements on the payment ledger.

6.4 Inside a Node

Nodes are compute containers running on internet-attached hosts. They
register their identity, network address and related metadata on the Node
registration ledger through a ledger adapter.

message broker

message
adapter

execution
service

file system
adapter

Hub
events

WASM

JS VM
ledger

adapter

ledger

Python VM

Figure 6: Node orchestration.

An Orchestrator instantiates processes running on each Node, and a
local message broker provides inter-process communication. The file system
adapter retrieves task code from global code storage and persists it in local
storage. The event adapter listens for task requests and commits responses
to the Hub’s message bus.

The Orchestrator starts a unique Wasm virtual machine labeled by the
content address of the code specified in the task request, and it terminates
the virtual machine when execution completes. Multiple virtual machines
can run concurrently, up to the compute container’s provisioned, processing
capacity.

25

The event adapter monitors Hub messages and adds any disputed events
to the time channel ledger through the ledger adapter. Finally, the invoice
monitoring service receives invoice notices from the Accounting Service and
commits any objections to the evidence ledger via the ledger adapter.

Acknowledgement

We thank Sami Mäkelä for helpful pointers regarding missing transcripts
and faulty task broadcasts.

References
(last accessed Mar. 3, 2024)

[1] Andreas M Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryp-
tocurrencies. O’Reilly Media, Inc., 2014. Chap. 7. isbn: 9781449374044.
url: https : / / www . oreilly . com / library / view / mastering -

bitcoin/9781491902639/ch07.html#:~:text=The%20primary,

compute%20it.

[2] API. url: https://en.wikipedia.org/wiki/API.

[3] Hazeline Asuncion. About Data Provenance. url: https://faculty.
washington.edu/hazeline/ProvEco/generic.html.

[4] Atomic broadcast. url: https://en.wikipedia.org/wiki/Atomic_
broadcast.

[5] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. “On
bitcoin and red balloons”. In: Proceedings of the 13th ACM Confer-
ence on Electronic Commerce. EC ’12. Valencia, Spain: Association
for Computing Machinery, 2012, pp. 56–73. isbn: 9781450314152. doi:
10.1145/2229012.2229022. arXiv: 1111.2626 [cs.GT].

[6] Binary search algorithm. url: https://en.wikipedia.org/wiki/
Binary_search_algorithm.

[7] Manuel Cebrian, Lorenzo Coviello, Andrea Vattani, and Panagiotis
Voulgaris. “Finding red balloons with split contracts: robustness to in-
dividuals’ selfishness”. In: STOC ’12. New York, New York, USA: As-
sociation for Computing Machinery, 2012, pp. 775–788. isbn: 9781450
312455. doi: 10.1145/2213977.2214047. url: https://web.media.
mit.edu/~cebrian/qin.pdf.

26

https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/ch07.html#:~:text=The%20primary,compute%20it
https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/ch07.html#:~:text=The%20primary,compute%20it
https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/ch07.html#:~:text=The%20primary,compute%20it
https://en.wikipedia.org/wiki/API
https://faculty.washington.edu/hazeline/ProvEco/generic.html
https://faculty.washington.edu/hazeline/ProvEco/generic.html
https://en.wikipedia.org/wiki/Atomic_broadcast
https://en.wikipedia.org/wiki/Atomic_broadcast
https://doi.org/10.1145/2229012.2229022
https://arxiv.org/abs/1111.2626
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://doi.org/10.1145/2213977.2214047
https://web.media.mit.edu/~cebrian/qin.pdf
https://web.media.mit.edu/~cebrian/qin.pdf

[8] Wei Chen, Yajun Wang, Dongxiao Yu, and Li Zhang. “Sybil-proof
mechanisms in query incentive networks”. In: Proceedings of the Four-
teenth ACM Conference on Electronic Commerce. EC ’13. Philadel-
phia, Pennsylvania, USA: Association for Computing Machinery, 2018,
pp. 197–214. isbn: 9781450319621. doi: 10.1145/2482540.2482588.
arXiv: 1304.7432 [cs.GT].

[9] Command-line interface. url: https://en.wikipedia.org/wiki/
Command-line_interface.

[10] Comparing crypto network’s time-to-finality (TTF). Feb. 2023. url:
https://twitter.com/MessariCrypto/status/1631678346722529

282.

[11] Content Addressing: What It Is and How It Works. url: https://
fission.codes/blog/content-addressing-what-it-is-and-how-

it-works/.

[12] Anthony Cuthbertson. Bitcoin creator Satoshi Nakamoto now 15th
richest person in the world. 2021. url: https://www.independent.
co.uk/tech/bitcoin- satoshi- nakamoto- wealth- net- worth-

b1957878.html.

[13] Directed acyclic graph. url: https://en.wikipedia.org/wiki/
Directed_acyclic_graph.

[14] ERC-20 Token Standard. url: https://ethereum.org/en/develop
ers/docs/standards/tokens/erc-20/.

[15] Instrumentation (computer programming). url: https://en.wikipe
dia.org/wiki/Instrumentation_(computer_programming).

[16] Interpreter (computing). url: https://en.wikipedia.org/wiki/
Interpreter_(computing).

[17] Introduction — tlsn-docs. url: https://docs.tlsnotary.org/#%
E2%91%A0-multi-party-tls-request.

[18] Just-in-time compilation. url: https://en.wikipedia.org/wiki/
Just-in-time_compilation.

[19] Aleksandar Kuzmanovic. “Net Neutrality: Unexpected Solution to
Blockchain Scaling”. In: Communications of the ACM 62.5 (Apr. 2019),
pp. 50–55. issn: 0001-0782. doi: 10.1145/3312525.

27

https://doi.org/10.1145/2482540.2482588
https://arxiv.org/abs/1304.7432
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://twitter.com/MessariCrypto/status/1631678346722529282
https://twitter.com/MessariCrypto/status/1631678346722529282
https://fission.codes/blog/content-addressing-what-it-is-and-how-it-works/
https://fission.codes/blog/content-addressing-what-it-is-and-how-it-works/
https://fission.codes/blog/content-addressing-what-it-is-and-how-it-works/
https://www.independent.co.uk/tech/bitcoin-satoshi-nakamoto-wealth-net-worth-b1957878.html
https://www.independent.co.uk/tech/bitcoin-satoshi-nakamoto-wealth-net-worth-b1957878.html
https://www.independent.co.uk/tech/bitcoin-satoshi-nakamoto-wealth-net-worth-b1957878.html
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)
https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://docs.tlsnotary.org/#%E2%91%A0-multi-party-tls-request
https://docs.tlsnotary.org/#%E2%91%A0-multi-party-tls-request
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://doi.org/10.1145/3312525

[20] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem”. In: ACM Transactions on Programming Lan-
guages and Systems 4.3 (July 1982), pp. 382–401. issn: 0164-0925.
doi: 10.1145/357172.357176.

[21] Merkle proofs Explained. url: https://medium.com/crypto- 0-
nite/merkle-proofs-explained-6dd429623dc5.

[22] Merkle tree. url: https://en.wikipedia.org/wiki/Merkle_tree.

[23] Orphaned Block Definition. url: https://coinmarketcap.com/acad
emy/glossary/orphaned-block.

[24] Path (graph theory). url: https://en.wikipedia.org/wiki/Path_
(graph_theory).

[25] Peer-to-peer. url: https://en.wikipedia.org/wiki/Peer- to-
peer.

[26] Smoking gun. url: https://en.wikipedia.org/wiki/Smoking_gun.

[27] Sybil attack. url: https://en.wikipedia.org/wiki/Sybil_attack.

[28] John C. Tang, Manuel Cebrian, Nicklaus A. Giacobe, Hyun-Woo Kim,
Taemie Kim, and Douglas “Beaker”Wickert. “Reflecting on the DARPA
Red Balloon Challenge”. In: Communications of the ACM 54.4 (Apr.
2011), pp. 78–85. issn: 0001-0782. doi: 10.1145/1924421.1924441.

[29] Jason Teutsch and Christian Reitwießner. “A Scalable Verification So-
lution for Blockchains”. In: Aspects of Computation and Automata
Theory with Applications. Vol. 42. Lecture Notes Series, Institute for
Mathematical Sciences, National University of Singapore. World Sci-
entific, Nov. 2023, pp. 377–424. doi: 10.1142/9789811278631_0015.
arXiv: 1908.04756 [cs.CR].

[30] Apostolos Tzinas, Srivatsan Sridhar, and Dionysis Zindros. On-Chain
Timestamps Are Accurate. Cryptology ePrint Archive, Paper 2023/1648.
(to appear in Financial Cryptography and Data Security 2024). url:
https://eprint.iacr.org/2023/1648.

[31] Michael Walfish and Andrew J. Blumberg. “Verifying Computations
without Reexecuting Them”. In: Communications of the ACM 58.2
(Jan. 2015), pp. 74–84. issn: 0001-0782. doi: 10.1145/2641562.

[32] WebAssembly. url: https://webassembly.org.

[33] What are smart contracts on blockchain? url: https://www.ibm.
com/topics/smart-contracts.

28

https://doi.org/10.1145/357172.357176
https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5
https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5
https://en.wikipedia.org/wiki/Merkle_tree
https://coinmarketcap.com/academy/glossary/orphaned-block
https://coinmarketcap.com/academy/glossary/orphaned-block
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Smoking_gun
https://en.wikipedia.org/wiki/Sybil_attack
https://doi.org/10.1145/1924421.1924441
https://doi.org/10.1142/9789811278631_0015
https://arxiv.org/abs/1908.04756
https://eprint.iacr.org/2023/1648
https://doi.org/10.1145/2641562
https://webassembly.org
https://www.ibm.com/topics/smart-contracts
https://www.ibm.com/topics/smart-contracts

[34] What is a Container? url: https://www.docker.com/resources/
what-container/.

[35] Zihan Zheng, Peichen Xie, Xian Zhang, Shuo Chen, Yang Chen, Xiaob-
ing Guo, Guangzhong Sun, Guangyu Sun, and Lidong Zhou. Agatha:
Smart Contract for DNN Computation. 2021. arXiv: 2105 . 04919

[cs.CR].

29

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://arxiv.org/abs/2105.04919
https://arxiv.org/abs/2105.04919

	Invariants as a basis for trust
	The need for transcripts
	Aspects of transparent computation
	Blockchain as auditor
	Cloud coordination
	A taste of secret sauce

	Task lifecycle
	Protocol overview
	Code distribution
	Task issuance
	Node registration
	Node selection
	Task broadcast
	Solution commitment
	Transcript generation
	Node remuneration

	Task Requester endpoints
	Metatasks
	Hub-attested transcript
	Transcript ensemble
	External data integration
	Snap response

	Economics don’t lie

	Things that can’t go wrong
	Solution censorship
	Conflicting solutions
	Collusion on Node selection
	Are spoofed transcripts possible?
	Lazy Dispatcher versus red balloons
	A filesystem broadcast protocol
	Code files and large inputs
	Large solutions

	Deregistering unresponsive Nodes
	On slightly misplaced timestamps
	Premature reveals
	Bifurcated invoices

	Platform architecture
	Audit ledgers
	Preparing a task
	Instrumentation
	Pre-deployment

	Coordination services
	Deployment
	Dispatcher
	Hub
	Transcripts
	Accounting

	Inside a Node

